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Abstract: Emulsion systems are widely used in various industries, including the cosmetic, pharma-
ceutical, and food industries, because they require emulsifiers to stabilize the inherently unstable
contact between oil and water. Although emulsifiers are included in many products, excessive use of
emulsifiers destroys skin barriers and causes contact dermatitis. Accordingly, the consumer demand
for cosmetic products made from natural ingredients with biocompatibility and biodegradability
has increased. Starch in the form of solid nanosized particles is considered an attractive emulsifier
that forms and stabilizes Pickering emulsion. Chemical modification of nanosized starch via acid
hydrolysis can effectively provide higher emulsion stability. However, typical acid hydrolysis limits
the industrial application of starch due to its high time consumption and low recovery. In previous
studies, the effects of starch nanoparticles (SNPs) prepared by treatment with acidic dry heat, which
overcomes these limitations, on the formation and stability of Pickering emulsions were reported.
In this study, we evaluated the safety of SNPs in skin cell lines, 3D cultured skin, and human skin.
We found that the cytotoxicity of SNPs in both HaCaT cells and HDF cells could be controlled by
neutralization. We also observed that SNPs did not induce structural abnormalities on 3D cultured
skin and did not permeate across micropig skin tissue or human skin membranes. Furthermore,
patches loaded with SNPs were found to belong in the “No irritation” category because they did not
cause any irritation when placed on human skin. Overall, the study results suggest that SNPs can be
used as a safe emulsifier in various industries, including in cosmetics.

Keywords: emulsifier; starch nanoparticles; 3D cultured skin; cell viability; human skin

1. Introduction

In emulsion systems, finely divided solubilized hydrophobic materials are dispersed
in an aqueous medium [1,2]. This system typically comprises a mixture of oil and water
to facilitate the supply of antioxidants or functional lipid compounds. Because of these
properties, emulsion systems are actively applied in the cosmetic, pharmaceutical, medical,
and food industries [3]. However, emulsion systems can separate over time, returning
to their original state, because the contact between oil and water is inherently unstable.
To inhibit separation, a surfactant that stabilizes the emulsion is essential [4]. Although
synthetic surfactants are applied in the cosmetic industry, their biosafety is not guaran-
teed [5]. Several studies have reported that surfactants such as sodium chloride, panthenol,
and glycerol included in cleansing products can cause pH changes, barrier dysfunction,
and itching in the stratum corneum [6,7]. Accordingly, consumers are demanding cos-
metic products made from natural ingredients with biocompatibility and biodegradability.
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This demand has been partly addressed by the substitution of synthetic ingredients with
natural alternatives.

Starch is considered an effective alternative for emulsion stabilization, not only because
it is safe due to its nonallergenic nature but also because it is abundant and inexpensive [8].
Natural starch granules may have reduced effectiveness as emulsion stabilizers due to
their size and hydrophobicity, but chemically modified nanosized starch can be an effective
stabilizer [9]. Nanoparticles can be used as solid stabilizers, providing additional advan-
tages, such as higher emulsion stability [10]. This is called a Pickering emulsion, in which
nanoparticles are responsible for forming and stabilizing the emulsion [11]. Thus, various
methods, such as acid hydrolysis, are used to reduce the particle size of starch.

Typical acid hydrolysis is time consuming and has low recoveries, which limits the in-
dustrial application of starch [12]. In previous studies, the effects of starch manufactured by
overcoming these limitations of their physical properties and the formation and stability of
Pickering emulsions were reported [13]. In fact, starch nanoparticles (SNPs) manufactured
via dry heating under mildly acidic conditions showed a high emulsification capacity and
were stable even during heating and freeze–thaw treatment [10,13]. Based on this, SNPs
are expected to be applied in the food and cosmetic industries as an effective emulsifier.
However, studies on the effect of SNPs on skin cells and tissues have not been reported.
Therefore, in the present study, we investigated the safety of SNPs in human keratinocytes
(HaCaT) and fibroblasts (HDF), reconstructed 3D skin, micropig skin and human skin.

2. Results
2.1. Cytotoxicity of SNPs in HaCaT Cells and HDF Cells

To evaluate whether SNPs affect the viability of human skin cells, SNPs were dissolved
in DMEM at 1–5% (w/v) and used to treat HaCaT cells and HDF cells. The commercially
available emulsifiers PEG60, PEG40, SSG, GS, and HL were used as controls. The syn-
thetic emulsifiers PEG60, PEG40, and SSG showed high cytotoxicity at all concentrations
(Figure 1A–C). On the other hand, the naturally derived emulsifiers GS, HL, and normal
starch had no toxicity affecting the viability of HaCaT cells and HDF cells at any tested
concentration (Figure 1D–F). The 0.6 SNPs showed no cytotoxicity, but 0.8 SNPs signifi-
cantly reduced the cell viability at the high concentration of 5% (Figure 1G,H). Notably, we
identified cytotoxicity leading to decreased cell viability according to the amount of added
acid. In particular, 1.0 SNPs and 1.2 SNPs showed strong cytotoxicity at more than 3%
(Figure 1I,J). However, neutralized 1.0 SNPs.N and 1.2 SNPs.N did not show cytotoxicity
(Figure 1K,L). Therefore, SNPs are considered to exhibit cytotoxicity due to the added acid,
which can be overcome by a neutralization.

2.2. Emulsification of SNPs

A Pickering emulsion is a thermodynamically unstable system that, depending on
the conservation period, causes phenomena such as flocculation, coalescence, creaming
and sedimentation [10,14,15]. The separation of the emulsion due to density differences
causes the cream layer to float. For 0.6 SNPs, oiling off was observed after 15 min of
storage, and then the emulsion was clearly separated into an oil, emulsion, serum, and
SNP sedimentation layers (from the first layer to the fourth layer) after storage for one
day. However, stable emulsification was observed for SNPs supplemented with 0.8 mL or
more of acid, and there was no significant difference related to acid amount (Figure 1M).
Although creaming was observed after storage for one day, oiling-off was not observed for
the emulsion stabilized by SNPs with 0.8 mL or more of acid. These data suggest that the
addition of acid can increase the emulsion stability of SNPs.
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Figure 1. Cytotoxicity and emulsification of SNPs. Cytotoxicity of (A) PEG60 hydrogenated castor
oil, (B) PEG40 stearate, (C) sodium stearoyl glutamate, (D) glyceryl stearate, (E) hydrogenated
lecithin, (F) normal starch, (G) 0.6 SNPs, (H) 0.8 SNPs, (I) 1.0 SNPs, (J) 1.2 SNPs, (K) 1.0 SNPs.N and
(L) 1.2 SNPs.N in both HaCaT cells and HDF cells. * p < 0.05, ** p < 0.01, *** p < 0.001 versus the 0%
SNPs group. The experiment was repeated at least five times, and similar results were shown as
mean ± S.E.M. (M) Image of Pickering emulsions stabilized by SNPs. The experiment was repeated
at least three times, and similar results were shown as mean ± S.E.M.



Molecules 2023, 28, 806 4 of 13

2.3. The Effects of 1.0 SNPs and 1.0 SNPs.N in a 3D Cultured Skin Model

Based on the above results, we further investigated the safety of 1.0 SNPs and
1.0 SNPs.N in a 3D cultured skin model that replicates human skin. Cytotoxicity and histo-
logical analyses were performed to evaluate skin irritation with 1.0 SNPs and
1.0 SNPs.N. Commercially available emulsifiers, such as PEG60, PEG40, SSG, GS, and
HL, were used as controls. The cytotoxicity of 1.0 SNPs and 1.0 SNPs.N in 3D cultured
skin was investigated at 1–5%, and synthetic emulsifiers including PEG60 and naturally
derived emulsifiers such as GS were used at 1% and 3%, respectively. Except for SSG,
none of the emulsifiers, including SNPs, were toxic to the 3D cultured skin (Figure 2A). In
addition, there was no significant change in the structure of the 3D cultured skin. Similar
to the cytotoxicity results, none of the emulsifiers except SSG significantly changed the
structure of the epidermis and the dermis (Figure 2B,C). Notably, SSG decomposed both
the epidermis and the dermis, resulting in high cytotoxicity (Figure 2C). SSG is considered
nonirritating and is frequently used in cosmetics and cleansers due to its softening and
emulsifying properties. However, excessive use of emulsifiers can irritate the skin, and in
fact, cases of allergic contact dermatitis caused by SSG have been reported [16]. Thus, we
observed that SNPs were safer than synthetic emulsifiers, especially SSG, in 3D cultured
human skin models.
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Figure 2. Cytotoxicity and histological analysis of SNPs and synthetic emulsifiers in 3D cultured
human skin. (A) Cytotoxicity of 1.0 SNPs, 1.0 SNPs.N, and five commercial emulsifiers compared to
normal cultured skin. The data are shown as the mean ± S.E.M. ** p < 0.01 versus the control group
(CON). (B) Ratio graph of the epidermis and dermis visualized by hematoxylin and eosin (H & E)
staining. (C) Images of H & E staining of the 3D cultured skin were acquired at 200× magnification,
and representative images are shown; scale bar: 100 µm. The experiment was repeated at least three
times and similar results were shown as mean ± S.E.M.

2.4. The Permeation Effects of 1.0 SNPs and 1.0 SNPs.N in a Diffusion System

Next, we examined the skin permeability of SNPs. Some emulsifiers destroy the skin
barrier and trigger allergies due to the permeation of antigens into the skin [17,18]. Recently,
the increase in the number of patients with emulsifier contact dermatitis has become a
problem [19,20]. Therefore, micropig skin tissues and start-M™ skin membranes were used
to assess the permeability of SNPs in a diffusion system. Micropig tissues and start-M™
skin membranes were attached to the device, and diffusion samples were collected after
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exposure to SNPs for 5 min and 1, 2, 4, 8, and 24 h (Figure 3A). Saccharide derived from
5 mg/mL SNPs was detected within 20–40 min and analyzed under the same conditions
(Figure 3B). No saccharide was detected in liquid nitrogen frozen micropig skin tissue
(Figure 3C) or in time-dependent diffusion space samples (Figure 3D,E). Similar effects
were observed in the start-M™ skin membrane (Figure 3F,G). These data indicate that the
1.0 SNPs and 1.0 SNPs.N do not permeate the skin or remain in the skin tissue.
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Figure 3. The permeation effect of 1.0 SNPs and 1.0 SNPs.N in a diffusion system. (A) Composition
of the diffusion system and (B) HPSEC chromatogram of 5 mg/mL SNPs. The chromatogram of
(C) micropig skin tissue, (D) diffused 1.0 SNPs and (E) diffused 1.0 SNPs.N with 50 µg/mL SNPs on
micropig skin tissue. The chromatogram of (F) 1.0 SNPs and (G) 1.0 SNPs.N with 50 µg/mL SNPs on
skin membranes. The experiment was repeated at least three times, and similar results were shown
as mean ± S.E.M.

2.5. The Irritation Effects of 1.0 SNPs and 1.0 SNPs.N on Human Skin

Based on the above results, primary irritation in human skin was evaluated. Patches
loaded with 20 µL each of 1% 1.0 SNPs and 1% 1.0 SNPs.N were attached to human dorsal
skin for 24 h. Stimulation levels were graded by expert visual assessment 30 min and
24 h after patch removal. As expected, none of the 33 subjects experienced any irritation,
including erythema or itching. Because the visual evaluation grade was 0, the stimulation
index was also calculated as 0.00 (Table 1). The 1.0 SNPs and 1.0 SNPs.N were found to
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belong in the “No irritation” category. Therefore, SNPs do not cause any real irritation to
human skin.

Table 1. Irritation evaluation of 1.0 SNPs and 1.0 SNPs.N on human skin. The test was repeated on
33 subjects with healthy skin, and similar results were shown.

Sample Name Concentration
Visual Assessment Grade Skin Irritation

Index
Irritation

EvaluationAfter 30 min After 24 h

1.0 SNPs
1% (w/v)

0 0 0.00 No irritation

1.0 SNPs.N 0 0 0.00 No irritation

3. Discussion

Due to their remarkable emulsification, dispersal and cleaning effects, synthetic emul-
sifiers are used in a variety of industries, including the cosmetics and food industries [21].
Synthetic emulsifiers have the advantage of being inexpensive and mass-produced. How-
ever, synthetic emulsifiers can irritate the skin, destroy its protective function and carry
harmful substances into the skin [22]. In particular, synthetic emulsifiers present in almost
all cosmetics, including soaps and creams, can cause contact dermatitis with erythema
and itching [23–25]. Therefore, in this study, we investigated the safety of maize starch
nanoparticles (SNPs) manufactured via acidic dry heat as effective emulsifiers. Notably,
high emulsion stability was observed, with no significant differences except for the 0.6 SNPs.
This suggests that SNPs prepared via modified acid hydrolysis are effective emulsifiers.

Human keratinocytes (HaCaT), which account for 80% of epidermal cells, form skin
keratin and play an external barrier role [26]. Human fibroblasts (HDF) are known to form
connective tissue in the skin, produce an extracellular matrix and play an important role
in the wound healing process [27]. Therefore, it is possible to predict the effect of SNPs
exposure on human skin in HaCaT cells and HDF cells. Many studies have reported the
cytotoxicity of various emulsifiers, including PEG 7 glyceryl cocoate, and coemulsifiers,
such as nanostructured lipid carriers, in HaCaT cells and HDF cells [28–32]. PEG 7 glyceryl
cocoate, often used in cosmetics, including hair shampoo and rinse, was reported to
cause mild irritation [28]. Sodium lauryl sulfate, a typical commercial emulsifier, also
demonstrates cytotoxicity [29]. In addition, solid lipid nanoparticle-based stearic acid was
reported to be cytotoxic [30]. In our study, SNPs manufactured with 0.8–1.2 mL of acid were
cytotoxic to HaCaT cells and HDF cells. However, the neutralized 1.0 SNPs (1.0 SNPs.N)
and 1.2 SNPs (1.2 SNPs.N) were confirmed to show reduced cytotoxicity. Thus, we found
that maize starch converted to a nanosize by acidic dry heat followed by neutralization
exhibits reduced cytotoxicity.

Moreover, we investigated the safety of 1.0 SNPs and 1.0 SNPs.N in 3D cultured skin
because they formed a stable Pickering emulsion and were more economical than 1.2 SNPs.
A 3D skin model similar to the human skin structure was used to assess structural safety
and cytotoxicity [33]. As expected, treatment with 1–5% 1.0 SNPs.N left the skin structure
unchanged, similar to normal 3D skin. Surprisingly, even 1.0 SNPs induced no significant
changes. The Environmental Working Group (EWG), a nonprofit environmental citizenship
organization in the United States, has established a safety standard for synthetic emulsifiers,
with scores ranging from 0 (low risk) to 10 (high risk). EWG reported that synthetic
emulsifiers, such as PEG60 hydrogenated castor oil (PEG60), PEG40 stearate (PEG40),
sodium stearoyl glutamate (SSG), glyceryl stearate (GS), and hydrogenated lecithin (HL),
are low-hazard (score under 3) ingredients. However, SSG completely decomposed the
3D cultured skin. SSG, classified as an anionic emulsifier, is often used in cosmetics,
especially face cleansers [34]. Although research on the sensitivity of SSG is unclear,
anionic emulsifiers are considered the harshest with regard to skin health compared to
other emulsifiers [35,36]. The mechanisms of anionic emulsifiers in stratum corneum
hydration are reported to be related to the irritation properties of anionic emulsifiers [37].
Considering these points, 1.0 SNPs and 1.0 SNPs.N are suggested to be safe, without any



Molecules 2023, 28, 806 7 of 13

effect on the skin. However, PEG60 and PEG40 showed noncytotoxicity in 3D cultured skin,
unlike in HaCaT cells and HDF cells. Indeed, 3D cultured skin is more likely to mimic the
physiological response of skin than 2D cell cultures due to the interaction of the epidermis
and dermis [38]. Nevertheless, 3D cultured skin tissue has a particular advantage in wound
healing and absorption tests over cytotoxicity assays due to improved cell resistance to toxic
agents [33,39]. Therefore, conflicting findings of cytotoxicity to 2D cells and 3D cultured
skin have been reported, and these should be comprehensively considered [38,40].

The above results suggest that 1.0 SNPs and 1.0 SNPs.N are harmless to human skin
ex vivo. Therefore, we performed a human skin irritation test. Dorsal skin exposed to the
1.0 SNPs and 1.0 SNPs.N for 24 h did not exhibit any irritation, including erythema and
itching. One limitation of this study is that only 1.0 SNPs and 1.0 SNPs.N, not synthetic
emulsifiers, were tested for skin irritation. Nevertheless, although various skin irritations
caused by synthetic emulsifiers have been recently reported, both 1.0 SNPs and 1.0 SNPs.N
were found to belong in the “No irritation” category. Based on this, we suggest that both
1.0 SNPs and 1.0 SNPs.N can be used as safe emulsifiers.

In addition, skin permeation and emulsifier residues can cause atopic dermatitis,
allergies, mutations and chronic skin lesions [41,42]. Emulsifiers cause excessive solubiliza-
tion of skin lipids, leading to itching, dryness, and inflammation via interaction with the
stratum corneum [43]. In particular, synthetic emulsifiers cause skin cell apoptosis, cancer,
and skin aging due to dysfunction of moisture retention and protein denaturation in the
stratum corneum [44]. Therefore, emulsifiers induce emulsification of skin but should not
permeate into the skin [45]. In vitro skin permeation tests can compare the absorption and
permeability of a substance and can be a useful model for evaluating the permeation of
human skin [46]. We found that 1.0 SNPs and 1.0 SNPs.N were not detected in the 24 h
diffusion system of the micropig skin tissue and skin membrane, and no residue of the
micropig skin tissue was detected. Therefore, lower skin permeabilities of 1.0 SNPs and
1.0 SNPs.N can be expected to result in less skin irritation and transdermal water
loss (TEWL).

SNPs are manufactured with abundant and inexpensive natural starch, which is the
most compelling reason for SNPs to be used as emulsifiers [8]. In previous studies, SNPs
exhibited low particle aggregation due to their high absolute zeta potential in aqueous so-
lutions [10]. In addition, SNPs can effectively encapsulate hydrophobic bioactive materials
such as curcumin [46]. The properties of reported SNPs suggest that bioactive materials can
be continuously delivered to drug targets. In this study, a modified acid hydrolysis method
was used to increase production efficiency, and the 1.0 SNPs and 1.0 SNPs.N produced are
effective in emulsification. Furthermore, without irritation that damages the skin, these
nanoparticles can be used as safe natural emulsifiers in various fields, including cosmetics
and topical pharmaceuticals. Thus, 1.0 SNPs and 1.0 SNPs.N can be effective and safe alter-
native emulsifiers for people with sensitive skin. Nevertheless, SNPs were less competitive
in cost and emulsification than commercially available emulsifiers. Therefore, it is necessary
to modify the manufacturing process of SNPs and evaluate their price competitiveness and
excellent emulsification. Moreover, researching the skin protective or regenerative effects
of SNPs could develop additional functions of SNPs and expand their application areas.

4. Materials and Methods
4.1. Preparation of Starch Nanoparticles (SNPs) and Emulsification Test

SNPs were prepared via acidic dry heat treatment of normal maize starch as previously
described by Choi et al. [13] and provided by the food processing laboratory at Kangwon
National University (Prof. J.-Y. Kim) (Figure 4). The mean diameter of the studied SNPs
was less than 30 nm, and the compositions are summarized in Table 2.
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Figure 4. Diagram for preparing the SNPs.

Table 2. Compositions of the studied SNPs.

Sample Name Vehicle Acid Addition Heating Time Neutralization

Normal starch 0.0 mL 0 h X
0.6 SNPs Distilled water 0.6 mL 2 h X
0.8 SNPs Distilled water 0.8 mL 2 h X
1.0 SNPs Distilled water 1.0 mL 2 h X
1.0 SNPs.N Distilled water 1.0 mL 2 h O
1.2 SNPs Distilled water 1.2 mL 2 h X
1.2 SNPs.N 30% EtOH 1.2 mL 3 h O

To conduct an emulsification test, each SNPs type (5%) was mixed with deionized
distilled water (85% of the total volume) and homogenized at 20,000 rpm for 2 min at
room temperature. Then, corn oil (10% of the total volume) was added, and the mixture
was vortexed for 3 min. Afterward, stabilization of the 15 mL Pickering emulsions by
homogenized SNP dispersions at 20,000 rpm for 6 min was observed.

4.2. Cell Culture and Cell Viability Analysis

Human epidermal keratinocytes (HaCaT) cells and human dermal fibroblasts (HDF)
cells were provided by the Food Chemistry Laboratory at Kangwon National University
(Prof. O.-H. Lee). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM;
Welgene, Gyeongsan, Korea) with 100 units/mL penicillin-streptomycin (P/S; Welgene,
Gyeongsan, Korea) and 10% fetal bovine serum (FBS; Atlas Biologicals, Fort Collins, CO,
USA) at 37 ◦C with 5% CO2, followed by subculture every three days [47,48]. Cell viability
was measured to determine the cytotoxicity of SNPs by using MTT assays. HaCaT cells
were treated with SNPs or commercially available emulsifiers for 24 h. The commercially
available emulsifiers PEG60 hydrogenated castor oil (PEG60), PEG40 stearate (PEG40),
sodium stearoyl glutamate (SSG), glyceryl stearate (GS), and hydrogenated lecithin (HL)
were used as controls (Table 3). After incubation with 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT; Sigma Chemical Co., St. Louis, MO, USA) solution
diluted 1:9 (5 mg/mL in PBS) at 37 ◦C for 4 h, purple formazan was formed in the cells. The
solution in each well was completely removed, and then, the purple formazan crystals were
dissolved in dimethyl sulfoxide (DMSO; Sigma Chemical Co., St. Louis, MO, USA) and
isopropyl alcohol (Daejung, Seongnam, Korea) at 1:1 (100 µL/well). The optical density
was measured at 540 nm by using a SpectraMax 190 microplate reader (Molecular Devices,
San Jose, CA, USA).

Table 3. Table of used commercial emulsifiers as control.

Sample Name Trade Name Type

PEG60 hydrogenated castor oil PEG60 Non-ionic synthetic emulsifier
PEG40 stearate PEG40 Non-ionic synthetic emulsifier
Sodium stearoyl glutamate SSG Anionic synthetic emulsifier
Glyceryl stearate GS Naturally derived emulsifier
Hydrogenated lecithin HL Naturally derived emulsifier
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4.3. Cell Viability Analysis in a Reconstituted 3D Human Skin Model

Reconstituted human skin (Neoderm-EDTM) was purchased from Tegoscience (Seoul,
Korea). Neoderm-EDTM is a commercially reconstituted human skin composed of ker-
atinocytes and fibroblasts. The skin tissues were cultured in maintenance medium provided
by the manufacturer and incubated at 37 ◦C with 5% CO2. The cytotoxicity of SNPs was
measured by using MTT assays according to the manufacturer’s protocol [49]. Skin tissues
were treated with SNPs or commercially available emulsifiers for 24 h. After incubation
with MTT solution (25 mg/mL in PBS) diluted to 0.3 mg/mL in maintenance medium at
37 ◦C for 4 h, purple formazan was formed in the tissues. All tissues were collected and
punched to a diameter of 5 mm, and then, the purple formazan crystals were dissolved in
1 mL of 0.04 N hydrochloric acid (HCl)-isopropyl alcohol for 4 h. The optical density was
measured at 540 nm by using a SpectraMax 190 microplate reader (Molecular Devices,
San Jose, CA, USA).

4.4. Histological Observation

After reconstituted 3D cultured skin was exposed to SNPs for 24 h, the sample was
collected and fixed in 10% formalin solution at room temperature (20 ± 5 ◦C) and then
embedded in paraffin [50]. Each section cut from the paraffin-embedded skin tissue
was stained with hematoxylin and eosin (H & E). Images were obtained via light mi-
croscopy (Olympus, Tokyo, Japan), and histological analysis was conducted. The epidermal
and dermal thicknesses were analyzed by observing the portion stained with H & E at
200× magnification.

4.5. Skin Permeation Test

The skin permeation test was based on the Ministry of Food and Drug Safety (MFDS)
guideline for alternative animal test methods “in vitro skin absorption test” and the Or-
ganization for Economic Co-operation and Development (OECD) guideline for testing of
chemicals, Section 4, TG 428 “Skin absorption: in vitro” [51]. The skin permeation test
was performed by using a Franz diffusion cell system in micropig skin tissue (3 × 3 cm2,
300 µm, Apures, Pyeongtaek-si, Korea) and a start-M™ membrane (25 mm, Millipore,
MA, USA). The tissues or the membranes were fixed on the support surface, and 12 mL
of sterile distilled water in the diffusion space was stabilized at 32 ± 1 ◦C and 600 rpm.
Then 1.0 SNPs and 1.0 SNPs.N were administered at 3% (w/v in distilled water) through
the donor space, and 1.8 mL of each sample was collected from the diffusion space for
analysis at 5 min and at 1, 2, 4, 8, and 24 h. The collected diffusion solution was subjected
to high-pressure size exclusion chromatography (HPSEC) to determine the permeation of
1.0 SNPs and 1.0 SNPs.N.

4.6. High-Performance Size Exclusion Chromatography

HPSEC is primarily employed for qualitative analysis of substances, and RI detectors
can analyze and quantify components with limited or no UV absorption, such as alcohols,
sugars, fatty acids, and macromolecules [52,53]. The HPSEC analysis was performed with
a Water 1515 Isocratic System (Waters Corporation, MA, USA) and an RI detector (Waters
Corporation, MA, USA). The samples were separated by using a Superdex™ 200 Increase
10/300 GL column (Cytiva, Marlborough, UK). The overall flow rate of the mobile phases
was 0.5 mL/min, and the injection volume was 200 µL. The mobile phases used were
water and 100 mM sodium chloride for diffusion space samples and micropig skin tissues,
respectively. The collected diffusion space samples were diluted tenfold in distilled water,
and the research micropig skin tissue was frozen in liquid nitrogen and then ground with
a mortar.

4.7. Skin Irritation Assessment

Human irritation research was conducted in accordance with the integrated addendum
to the ICH E6(R1) guideline for good clinical practice (E6(R2)) of the OATC Skin Clinical
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Trial Center, Inc. [54]. The skin irritation test was performed with the approval of the
OATC institutional review board (OATC IRB) (2018071702-2108-HR-150-01). The degree
of irritation caused by SNPs in the patch test was determined by expert visual evaluation.
The study was explained to 33 Koreans aged 20–60 years with healthy skin who consented
to participate. All skin irritations caused by 1% 1.0 SNPs and 1.0 SNPs.N were measured at
baseline, after attachment of a patch for 24 h, and at 30 min and 24 h after removal of the
patch. The irritation index was calculated by substituting the symptom-based score into
the following formula (Tables 4 and 5):

Skin irritation index =

[(
∑n

i=1 assessment grade
n (number o f subjects)

)
30 min +

(
∑n

i=1 assessment grade
n

)
24 h

]
number o f assessment

.

Table 4. Visual assessment grade based on symptoms.

Symbol Grade Symptoms

0 No reaction
+ 1 Slight erythema, either spotty of diffuse

++ 2 Moderate uniform erythema
+++ 3 Intense erythema with edema

++++ 4 Intense erythema with edema and vesicles

Table 5. Irritation evaluation range by skin irritation index.

Skin Irritation Index Irritation Evaluation

0.00~0.25 No irritation
0.26~1.00 Mild irritation
1.01~2.50 Medium irritation
2.51~4.00 Strong irritation

4.8. Statistical Analysis

All data were analyzed by using GraphPad Prism Version 8.0 (GraphPad, La Jolla,
CA, USA). All measurements are expressed as the mean ± standard error of the mean
(S.E.M.). All results were analyzed by using a Student–Newman–Keuls test for multiple
comparisons after one-way analysis of variance (ANOVA) was performed. Significance
was defined as p < 0.05.
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